skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaplan, Haim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    In this paper we study a few proximity problems related to a set of pairwise-disjoint segments in {ℝ}². Let S be a set of n pairwise-disjoint segments in {ℝ}², and let r > 0 be a parameter. We define the segment proximity graph of S to be G_r(S) := (S,E), where E = {(e₁,e₂) ∣ dist(e₁,e₂) ≤ r} and dist (e₁,e₂) = min_{(p,q) ∈ e₁× e₂} ‖p-q‖ is the Euclidean distance between e₁ and e₂. We define the weight of an edge (e₁,e₂) ∈ E to be dist(e₁,e₂). We first present a simple grid-based O(nlog² n)-time algorithm for computing a BFS tree of G_r(S). We apply it to obtain an O^*(n^{6/5}) + O(nlog²nlogΔ)-time algorithm for the so-called reverse shortest path problem, in which we want to find the smallest value r^* for which G_{r^*}(S) contains a path of some specified length between two designated start and target segments (where the O^*(⋅) notation hides polylogarithmic factors). Here Δ = max_{e ≠ e' ∈ S} dist(e,e')/min_{e ≠ e' ∈ S} dist(e,e') is the spread of S. Next, we present a dynamic data structure that can maintain a set S of pairwise-disjoint segments in the plane under insertions/deletions, so that, for a query segment e from an unknown set Q of pairwise-disjoint segments, such that e does not intersect any segment in (the current version of) S, the segment of S closest to e can be computed in O(log⁵ n) amortized time. The amortized update time is also O(log⁵ n). We note that if the segments in S∪Q are allowed to intersect then the known lower bounds on halfplane range searching suggest that a sequence of n updates and queries may take at least close to Ω(n^{4/3}) time. One thus has to strongly rely on the non-intersecting property of S and Q to perform updates and queries in O(polylog(n)) (amortized) time each. Using these results on nearest-neighbor (NN) searching for disjoint segments, we show that a DFS tree (or forest) of G_r(S) can be computed in O^*(n) time. We also obtain an O^*(n)-time algorithm for constructing a minimum spanning tree of G_r(S). Finally, we present an O^*(n^{4/3})-time algorithm for computing a single-source shortest-path tree in G_r(S). This is the only result that does not exploit the disjointness of the input segments. 
    more » « less
  2. In this work we revisit an interactive variant of joint differential privacy, recently introduced by Naor et al. [2023], and generalize it towards handling online processes in which existing privacy definitions seem too restrictive. We study basic properties of this definition and demonstrate that it satisfies (suitable variants) of group privacy, composition, and post processing. In order to demonstrate the advantages of this privacy definition compared to traditional forms of differential privacy, we consider the basic setting of online classification. We show that any (possibly non-private) learning rule can be effectively transformed to a private learning rule with only a polynomial overhead in the mistake bound. This demonstrates a stark difference with traditional forms of differential privacy, such as the one studied by Golowich and Livni [2021], where only a double exponential overhead in the mistake bound is known (via an information theoretic upper bound). 
    more » « less